If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+6n-54=0
a = 1; b = 6; c = -54;
Δ = b2-4ac
Δ = 62-4·1·(-54)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{7}}{2*1}=\frac{-6-6\sqrt{7}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{7}}{2*1}=\frac{-6+6\sqrt{7}}{2} $
| 6x(1/6)=x | | 10x-24=6+2x+18 | | x+(x+29)+(2x+24=) | | 2x-1(5x-4)=4(-x+1) | | 3/10y+6/5=-5/4 | | X+(x+22.5)+(x+34.5)=119.5 | | -47-10w=-9w-40-3w | | 6x+79=9x-5 | | -(4=h)=3h | | 89+x25=81 | | 2x/3x-1=7 | | x^2+(3x+1)=24 | | 2q^2+3q-8=0 | | A=1/2x5x15 | | 10/(5/3)=30/x | | 4x+36=76 | | (16^x)-(8.4^x)+7=0 | | -13+2=-39+8x | | -2z−12z=14 | | X2+6x-520=0 | | -2(10+2b)=-6b+34 | | 14v=6v+48 | | 13m+7m=20 | | 6(v+3)-8v=6 | | -20+-4x=-6x+34 | | 3x+5x-8=24 | | 9v^2+11v+5=4v^2 | | /16-4x=14-5x | | 4x-3+12=3 | | 7(x-9)=-2x-45 | | 2(2.25x+8)=x | | 20+20=4*ww= |